
COH4ERENCE FROM PARTIALLY COHERENT SOURCES(U) HARRY
DIAMOND LABS ADELPHI MD T H HOPP ET AL. OCT 82

UNCLASSIFIED HDL-TR-i979 F/S 12/1i N



LA* W N 2.2
~ 1. 1 1. 40

1.25 J1111 L 1.4 1.

MICROCOPY RESOLUTION TEST CHART

t4ATIONAL BUREAU OF STA&OARS-1963-A



H DL-TR-1 979
October 1082

AD~A 123253
Numerical Calculation of the Propagation of Spatial Coherence
from Partially Coherent Sources

HbJ -

DT1C U.S. Army Electronics Research
EECTE and Development Command

1993Harry Diamond Laboratoris

p it] )Adeiphi, MD 20783

L4
4

APPIV~(U 4& OOS*b dwut uufm



• ....~~q . . r V. - -- -iI . - - -I _ I . .. - - , .

.1l

-Thefidlnp in tls report anot to be omu d a m officld
Department of..ts Army pddoa mukm so deftpmd by otbw
autharid documents.

Citation of nmnuctun' or trals maw d not camtitutan official Indorsement .- oi pprova of' the on thereof.

L .Destroy rds reprt whe It is no looar seeded. Do not return
it to d originator.

oo .

" : .-. '

* " ;. :

!ii

:]1

i 1 .' .'V



UNCILASS IFIED
SECURITY CLAS~IIFICATION OFTI0 AE(hDaBt,0_______________

REPORT DOCUMENTATION PAC BEFOSE COMPLEM0N FORM

1. RPORT NUMBER AC110 O IEIIYSCTLGNME

HDL-TR-1979
4. TITLE (md Subdife)TYEORERT&PIDCVRD

Numerical Calculation of the Propagation
of Spatial Coherence from Partially Technical Report
Coherent Sources S EFRIGOO EOTNME

7. AUTNOR(.) S. CONTRACT OR GRANT NUM9DE111.)

Theodore H. Hopp
Dennis McGuire PRON: AlBROlOOO3AlA9

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Harry Diamond LaboratoriesARAAWKUNTUMR
2800 Powder Mill Road Program Ele: 61102
Adelphi, MD 20783

11i. CONTROLLING OFFICIE NAME AND ADDRESS 12. REPORT DATE

* .U.S. Army Materiel Development and October 1982
* *Readiness Command 1S. NUMBER OF PAGES

Alexandria, VA 22333 66
_14L MONITORING AGENCY NAME a ADDRESS(U if~lftu. 6.r C.M~tolUd Ofice.) 1S. SECURITY CLASS. (of dmd* -es, )

UNCLASSIFIED
I". DECAUSIICATION/ DOWNGRADING

Is. DISTRIBUTION STATEMENT (of this Repot)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of thea. boda mnterod in Bleak 20,0149ffat ftm Rapftw)

I&. SUPPLEMEMYNARY NOTES

HDL Project: A44913
DRCMS Code: 611102H440011
DA Project: 1L161102AH44

III. KEY WORDS (Centhowe an levinee el& of uoosew Out ldenlUt by Wleek auebW)

Near-field diffraction Rough surface reflections
Mutual intensity Mutual coherence
Numerical integration Oscillatory integrands
Physical optics Fresnel diffraction
Optical heterodyne Heterodvne detection

211 ANSTRACr e(meow as wwas N neeeo nd I I t by 10leek 01ahaw

~'This report considers the numerical calculation of the mutual
intensity function of highly coherent laser radiation after re-
flection from a surface having roughness on the scale of the laser
wavelength and at arbitrary distances from the reflector. The
mutual intensity function characterizes the second-order spatial
coherence properties of the nearly monochromatic reflected field
and is of interest for evaluating the potential of coherent detec-

* tion schemes for optical fuzing systems.rc-

JAM 72 0 Wn"O INV5SGn T UNCLASSIFIED

1 1SEOU11ITY CLASSIFCATW OF THIS PAGE (MwI Daeae"*.I~



I I.

UNCLASSIFIED
gCUmTY CIASIFICATION OF THIS PX9l[ hm nW 111"woo

20. ABSTRACT (cont'd)

The illuminated spot on the reflector is assumed to be circu-
lar, and a simple model for the mutual intensity function of the
reflected field near the spot is used to supply boundary values
for integral propagator calculations of the mutual intensity at
arbitrary distances. The numerical evaluation of the multiple-
integral propagator is made very difficult by the generally rapid
oscillations of the integrand over the integration ranges.
Methods for overcoming the difficulties are described in this
report. Sample calculations are presented, and a listing of a
FORTRAN program to perform the integrations is included.

UNCLASSIFIED

2 ICU.ITY CLASSIFICATION OF THIS PAG.. hn --ata-- 0



CONTENTS

Page

1, INTRODUCTION ..... ............................................. 5

2. PROBLEM FORMULATION ............. o........................oo. 7

3. CALCULATION OF INTEGRAL ........................................ 10

4. SAMPLE PROBLE4--IDERLIZN) GOODMAN SURFACE .... o................ 38

5. DISCUSSION . 50

ACKNOWLDG4ENT ................................................... 52

LITERATURE CITED ... . ......... ... ........... 53

APPENDIX A.--FORTRAN PROGRAM TO CALCULATE PROPAGATION OF MUTUAL
INTENSITY FUNCTION ..... .......... ...... ........ 55

DISTRIBUTION ...................................................... 65

FIGURES

1. Geometry of mutual intensity propagation problem .............. 8

2. Geometry for calculating J(P'IZ) ............................. 13

3. Geometry for integrating over a for evaluating J(Q'Io)- ...... 14

4. J(,JIa) for sample problem .................................... 22

5. Intensity versus offset from target axis ...................... 23

6. Geometry for calculating central contribution ................. 25

7. Mutual intensity at Goodman surface o.......................... 39

8. Geometry on observation plane for examining ........ 44

9. Mutual intensity versus observation point separation--fixed
point at center .............................................. 44

I



FIGURES

Page

10. Meutual intensity versus observation point separation--fixed
point 1 cm from center .. .................. 45

11. Mutual intensity versus observation point separation--fixed
point 3 cm from center *****..** .......... 46

12. Mutual intensity versus observation point separation (real
part)--fixed point at center *... ............. 49

13. Mutual intensity versus observation point separation (real
part)--fixed point 1 cm from center .............. 49

14. Mutual intensity versus observation point separation (real
part)--fied point 3cm from center .............. 50

DTIC
ELECTE
JIAN 11 1983

Accession For

NTIS GRA&I
DTIC TAB
Unannouniced Q
Ju.-l±ionctio

I / By _
Distribution/

Availnbi).ity Codes
jAvail and/or

Dist $Peet&l

/1 4

A



l e INTRODUCTION

This report discusses the numerical evaluation of certain types of

multiple integrals that arise in the theoretical description of short-

range coherent laser sensing systems. This work was part of an effort

at the Harry Diamond Laboratories (HDL) to explore the fuzing potential

of such sensors, which have promise for significantly increased

detection sensitivity compared with conventional direct detection

systems and would make Doppler information available to the fuze

designer.

A critical problem for the performance evaluation of coherent laser

fuzes can be seen from the following basic considerations. When a

nearly monochromatic laser beam illuminates a nominally flat target

surface at normal incidence, the reflected surfaces of constant phase

immediately in front of the target will be nominally planar and repli-

cate the surface roughness features, to the extent that shadowing

effects do not complicate the picture. If the roughness features have a

scale comparable to the illuminating laser's wavelength--a situation

which holds for aircraft skins and the C02 laser wavelength--then the

variation of phase of the reflected field in a plane immediately i.n

front of the target would be expected to oscillate with amplitude on the

order of 2w in a random-looking manner, as the observation point

traverses the illuminated region. The reflected field retains the

temporal coherence of the transmitter laser, but the spatial coherence

is severely degraded. Fortunately, as the reflected wavefront

*- propagates in space toward a receiver system, spatial coherence tends to

improve; that is, the spatial coherence within a given receiver aperture

increases with the distance between the receiver and the reflector.

This improvement is important because coherent detection depends on

establishing a phase match in space between the reflected and local

oscillator wavefronts in the mixing region at the receiver.
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In coherent optical radar applications, the receiver apertures and

target-to-receiver distances are such that there is virtually no spatial
coherence degradati7on effect. For fuzing applications, however, target-

to-receiver distances are usually relatively small--on the order of 10

m--so that, for practical receiver apertures, spatial coherence degra-

dation effects must be considered. This report describes a computa-

tional apparatus for analyzing these effects and presents sample

calculations. Many aspects of the computational problem present severe

numerical difficulties. Methods of overcoming these difficulties are

discussed, and a listing of the FORTRAN source code which carries out

the calculations is presented in appendix A.

The problem considered is the numerical calculation of the mutual

intensity function of the field reflected from a rough surface at

arbitrary distances from the reflector. Specifically, we are interested

in the mutual intensity function JB(Fi,!2) between two points,

ti and Pj, on an observation plane--the plane of the receiver

aperture--given the mutual intensity function Jo(P 1,P2) between arbi-

trary points (P 1 ,P 2 ) in the illuminated target region, a. The mutual

intensity function, defined precisely below, has the information needed

to determine spatial coherence degradation effects in the receiver, and

its propagation from the target region can be formulated in terms of

Huygens-Fresnel integral propagators. 1  In addition, the effect of the

rough surface can be modeled through the specification of the mutual

intensity function boundary values in the illuminated target region. V
7t

The mutual intensity function is used to describe the coherence and

intensity pattern of light in space. In this sense it is a generali-

zation of the familiar concept of intensity. Formally, the mutual

intensity is defined between two points, Pi and P2 , as the long-time

average of the product of the complex analytic signal of the field

IN. Born and f. Wolf, Principles of Optics, Ch 10, Pergamon Press

(1970).
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at P, with the complex conjugate of the analytic signal at P2,' where the

analytic signals are evaluated at the same time. A further generali-

zation would be to introduce a time element and define a function being

the time average product of the analytic signals at P and P2 when

these signals are observed a set time apart. This function is the well-

known mutual coherence function of physical optics. (Neither of these

functions preserves any polarization information, which would be a

further generalization. In this report, however, we will be exclusively

concerned with the mutual intensity function.)

We assume that the mutual intensity function is known on some plane

in space (the target plane) and that this plane is parallel to the

observation plane. In addition, we assume that the mutual intensity

function on the target plane is nonzero only over a circular area, a,

and within a the function depends only on the distance between the

evaluation points. That is, given any two points, P1 and P2 ' on the

target plane, the mutual intensity between P and P2 is zero if either
or P2 is outside a; otherwise, Jo(P 1 ,P 2) = - P2I) These

assumptions, while somewhat restrictive, still include the important

case of a homogeneously rough surface with no preferred direction

illuminated by a circular beam of coherent light.

2. PROBLEM FORMULATION

We begin with the general equation for the mutual intensity on an

observation plane B. Figure I shows the geometry being used. We have,

ik(s s2) )
J a Je s2 dP dP "

IN. Born and E. Wolf, Principles of Optics, Ch 10, Pergamon Press
(1970).

7
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a (TARGET CIRCLE) B (OBSERVATION PLAN)

NORMALS TO a

Figure 1. Geometry of mutual intensity propagation problem. (Line 00'
is normal to both a and B.)

In the above, k is the mean wavenumber,* sj= JPj - P, i = /T, and Aj

are directionality factors given by

A= -cos j

where Ej is the angle between j ~j) and the normal to o, and X is

the wavelength. (The integration is limited to a because we assume

Ja(PE2) is zero outside a.) From figure 1 we have

AIAl N VkD 2 (2)

*The field Is assumed to be nearly monochromatic.

8



so we obtain

(kD'~2 ( ( ~ ik(s1 ,2iks_s2) ,
22 dP . (3)

1 21

The equations in this form could, in theory, be integrated numeri-

cally simply by defining a coordinate system and performing the fourfold

nested integration indicated. Typically, however, the wavenumber k i

quite large and, unless one is willing to restrict attention to lon•

range calculations, the quantity k(sI - s2) in the exponential create

severe efficiency problems. Additionally, Jo(P1,P2 ) is typically

finely structured function, with a scale of about 10- 4 mm. For even

moderate-size target a, this implies excessively large numbers of grid

points for straightforward integration.

The above formulation can be simplified within the assumption pre-

sented above. Since JO(PIP 2)depends only on -P2i' we can

approximately decompose it into a constant term (also termed the

residual contribution) and a sum of terms corresponding to varying-size

circles of constant-value mutual intensity. That is, we can determine

appropriate wj, aj, and n such that, for a given error e,

I ° - 2~jI "ja(E -E2) j Wj GoE1P -21,aj) < C,4

where

x <a
.(x,a) (5)

10 x > a
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The residual term is obtained by setting a0 = . (We note that

is generally complex, so in general the wj are complex.) We

thus need to consider only the integration

ik(s1 -s2)

c -D)I~a) e dP1 dP2  (6)

for an arbitrary a. This integration will be considered in the next

section.

3. CALCULATION OF INTEGRAL

We are now concerned with the integral

(kD)2 fik(s, -s2)
f2s2 dPldP2  (7)

i 2

(where we have dropped the circumflex notation for J0 and JB used in the

last section and used rc , rather than a, as more expressive of a "cutoff

radius"). The behavior of JP I - P21,rc) can be accounted for by

changing the limits of integration

2 f~ ik(Sl-S 2)
' W Ct2 fa 2 dP1dP 2  , (8)

where o(P2 ) is the intersection of a with a circle of radius rc centered

on P2 . This integral, in turn, splits naturally into two terms:

10
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(1) a "central contribution" term,

ik(sl-s2)P' rkD)2 L-O L(O2  edP 1dP2  , 9
J11PE ' -2 1  Ty r" ) -' (E2) es2s2  -0t 9

where a - a' is the central portion of a with radius r- rc (where r

is the radius of a) and

(2) an "edge effect" term,

kD 2  f fik(s 1 -s2 )

P'NI =y eo a dPldP2 , (10)
' ("') J' ( 2) s2s2 (0

1 2

where a' is the remaining annulus of breadth rc on the outside edge of

y. The purpose of this partition of the integral is to isolate the

first term, where a(P2) does not intersect the edge of a (and is thus a

circle), from the second term, where is guaranteed to intersect

the edge of a, and hence is a more complicated case. As we shall see

later, realistic problems correspond to rc << r '(except for the resid-

ual term), and hence a' is a relatively small portion of a.

We note that if rc r0 the central contribution does not exist;

thus, the only contribution is due to the "edge effect," where a' = a.

Additionally, if rc 2 2ra, the intersection of a(P2) with a is a itself

(since P2 is inside a), so we obtain in this case

p2(p1,p2) = ( f e )kD2 J0 2) c
S> = 1IT a2S2 dP1 dP2 rc > 2r a
1 2 (11)
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This is the formula for the residual term contribution mentioned in the

last section. The integral in this case can be further reduced to the

product of two essentially identical integrals as follows.

r
We have

(ik(s 1 s2)
122 d d 2 F rc > 2r

1 2

(12)

i ekS1 , -k2

(kD) 2  pe
2/' 2 dP1  a dP2

We now define a function,

eiks
a(.'Iz) J -FdP, s = - , (13)

for arbitrary observation point P' and arbitrary circle Z. Figure 2

shows the geometry relevant to the definition of J(P' Is). We also

define the notational convention that a circumflex over a "prime" point

denotes the projection of that point onto the target plane. That is, in

a coordinate system with the origin at 0 in figure 2, if 
p

P= (x',y',D) ,

then

7 = (x',y',O)

12
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r

PO

Figure 2. Geometry for calculating J(P'IZ).

In terms of the J ('I) function, we have

JBPP!)~ .- )2 (tI )J*( 'I), rc  2r , (14)

where J* indicates the complex conjugate of J.

We now consider the numerical evaluation of J(P'Ia). We first note

that the integrand is constant for all points on any given circle cen-

tered at P'. This is because s is the slant height of a right circular

cone with apex at P' and a base with a circumference passing through P.

Thus, the most natural way to integrate over a is to use a polar coordi-

nate system centered at P'. We show this coordinate system in figure 3,

where we have arbitrarily selected the e = 0 line (using an r - 6 polar

coordinate notation) to pass through the center of a. In this coordi-

nate system, we have s =D 2 + r2 , and the integral becomes

13



(r)

(15)

ir
jr°  r D2 + r 2 +L r ) 2

r +S1

J a 2rO (r) e + dr= r, 20r D2 + r2--d

where 00(r) is the angle at which the circle of radius r intersects the

boundary of a, and ro = S - ro, if P is outside a (fig. 3(a)), or ro =

0 if PI is inside a (fig. 3(b)). The value of 2r 0 (r) is simply the arc

length of the portion of the circle centered at P' vf radius r falling

inside a. From simple geometry, assuming that the circles intersect as

in figure 3(a), we have

2r + S2 -r

0 cos-1  2S" (16)

In figure 3(b), if r <r, - S, the circles do not intersect, and we have

8o = w; otherwise, 8o is still given as above.

O = llO l

Figure 3. Geometry for integrating over a for evaluating J(P'Ia):
(a) P' falls outside o. (b) P' falls inside a; also, r < r. - S.

14
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We thus have two cases. If P' falls outside o, we have

(Ia JS+ra 2(r j S
drr eDA 0 r2 + a2 - r- -dr, S > r (17)

PS-r D + r2 2Sr a

If P' falls inside a, we have

ri%-s eik/ 2 +r2

J(P' IE ) = 2w r D 2 +r 2  dr

+r 2+r2  r2 + S2 -

+ 2 r cos-I dr, (18)r roS D2  + r 2 2S t

S < rO

The first term of the second case (S < ra) can be integrated in

closed form in terms of exponential integrals. We are considering the

integral

11 = 2w r D+ 2  dr (19)

If we change variables u - D2 + r2 , we obtain

1+ (r a-S)/D]2 eikU (20)

15



The quantityVl + [(r, - S)/D]2 will occur again, so we define

( 
"r 

+ S

.441= .(21)

We also define j
W. = + ( 22)

which will also be used later. We then have, from the definition2 of

the exponential integral El(z),

I1 = 27r[El(-ikD) - El(-ikD*)] . (23)

In terms of cosine and sine integrals, Ci(x) and Si(x), we have, from

the identity

E1(-ix) = -Ci(x) - iSi(x) + i j (24)

the expression

11 = 2w[Ci(kD*) - Ci(kD)] + i2fr[Si(kD*) - Si(kD)] . (25)

2M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, NBS Applied Math Series
55 (1970).

16
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While this expression could be evaluated using any of various methods

for calculating the Si and Ci functions, we note that normally kD is

very large (on the order of 106), so special precautions must be taken.

One method well suited to evaluating these functions for large arguments

is to express Si(x) and Ci(x) in terms of "auxiliary" functions f(x) and

g(x) as
2

Si(x) - - f(x) cos(x) - g(x) sin(x)

(26)
Ci(x) f(x) sin(x) - g(x) cos(x)

and use asymptotic expansions for f(x) and g(x) for large arguments.

f(x) -- + AL &L +**.

x x2  x4  x6

(27)g (x) ~ _/L + 1 +. . ..
X2  x 6

For realistic values of kD and kD*, these expansions converge extremely

rapidly; only three or four terms are needed for most calculations. At

long ranges, however, when D >> r - S, accuracy may be lost in computing

the differences involved in evaluating I.0 If, in the expressions for

Si(x) and Ci(x) in terms of f(x), g(x), sin(x), and cos(x), we express 4

as 1 + ( - 1) in the arguments for sin(x) and cos(x), we can arrive at

the expression

i= 2 eikD (m + io) , (28)

where

= g(kD) + f(kD*) sin (kD(* - 1)1 - g(kD*) cos [kD(* - 1)1

(29)

M f(kD) - f(kD*) cos [kD(* - 1)] - g(kD*) sin [kD(* - 1)1

2 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables, NBS Applied Math Series
55 (1970)o *

17
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The factor - 1 in the trigonometric functions can be computed at long

ranges using the approximation

/-i+ x I + - X2 + -1 x3  (30)

to yield

kMr2 S )  lr 2 1 2  1 r S S 2

* 1 ( .. 2~[ [1~(-Lj)] €31)

At short ranges, of course, the expression

4-1= 1 +(- 1 (32)

should be used.

We now turn attention to the second integral involved in J(' Ic)

(eq (17) and (18)). This integral, in both cases, can be written

S+ro  ek - 2 + S2 _ 2[ /2 = cols r 6 dr . (33)_rol D2 + r22S

This integral must be evaluated numerically, since no closed-form solu-

tion is known. This integral, and several others to be encountered

later in this report, will be reduced to a canonical form fu f(x)eiXdx

in order to make use of an efficient numerical integration program

18



developed at HDL 3 for integrals of this form. The above integral can be

reduced to canonical form with the substitution u = kV% 2 + r2, which

yields

k2 _o (kD)2  + (kS)2  _ (kr )2

2 ~kD q L 2kS(12 - (kD)2  (

At long ranges, the above form for 12 is unsuited for numerical

solution. (Because w - * < 4, the integration interval is very small

compared to the midpoint value of the interval, and severe truncation

errors will occur when taking differences.) A solution is to develop a

long-range approximate form for 12 This can be done by expanding the

radicals in equations (21) and (22), making a suitable change of vari-

ables; that is,

~D4. =kD4CI 77

rU
+ D Ir..S)2 1(r 4 + 1 S:6

kD" D D eD

i (35) b

T(ro S) DJ

D >> Ir- S

3 Theodore H. Hopp, A Routine for Numerical Evaluation of Integrals
with Oscillation Behavior, Proceedings, 1979 Army Numerical Analysis and
Computers Conference, El Paso, TX (1979).

19



* and

kDw k4 (r 0 S)

+ + ( & s 2  I/r + A2)kD + k~ (r(, + )2( -j 1 ) 1-~-~-JJ (36)

D r + S

Changing variables v =u -kD, we obtain

ikD JHeiv _ ~-v2 + kDv (kS)2 - dv,)
12 u v + ]Dv 2 +2 +(r)]

L L 2kS/v2 + 2kDv (37)

D >>r + S

where

k(r, S )2 / , ) r S ]
VL 2D (4 s) D (2\ s]

and

(38)

k(r + S)2 1(c S2 1r,+ S2)

To recapitulate, we now have expressed the function J(- for

arbitrary Pand circle a, as the sum of two integrals, I,~ and 12- 11

20



can be evaluated using asymptotic expansions of the exponential integral

7EW, and 12 has been expressed in canonical form for numerical evalu-

ation for both the general case and the long-range case.

Having established how to evaluate J(P Ir), we can now return to the

original problem of calculating JBCPIP -. We have (eq (8) to (10))

JB(NIU~) =lNE + j2(VIED2 I 39

which reduces to

- = (kD) 2 (s 1  ) j(pI) (40)
JB(N.; .) =J2(.NI,.D IN J(IO J*. 10

for rc> 2r a So far we have not considered how to evaluate J

when r < 2ro or how to evaluate JIIPIPj) at all. Evaluating
p, r ca

J '  for rc < 2r will not be considered in this report. As men-

tioned before, for realistic problems, unless the residual contribution

is being considered (in which case rc Z 2r a), we always have rc << ra.

Since in this case the area of a' is very small compared to the area of

a J2(PP), being an integral over a', makes a negligible contribution

to J Before proceeding with the investigation of JICP ,P ), we

will illustrate by way of an example the calculations we are now able to

perform.

If we consider a target, a, which is perfectly smooth (i.e., an

optically flat mirror), illuminated uniformly by coherent monochromatic

21
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light, the mutual intensity at the target is everywhere a real constant.

For simplicity, we will assume this constant to be unity. The mutual

intensity at an observation plane parallel to this mirror is precisely

P' with rc= (i.e., the residual contribution). We note that

when Pi = P , we have

(kD)
2  IJ(PIo)1

2

which, from the definition of mutual intensity, is the (real) intensity

at P1. Further, JB(PiPE) can be interpreted as the normalized diffrac-

tion pattern from a circular aperture c. Sample calculations were

performed for J(.jIla) for D = 10 m, r. = 0.05, A = 10.6 um, and for S

ranging from 0 to 0.1 m. This choice of parameters places PI well into

the near-field region of a. Plots of J(paJ and of JB(P,') are

shown in figures 4 and 5. (The code used to generate these plots was

checked by moving P1 to the far-field region of a to verify the expected

Fraunhoeffer diffraction pattern.)

gi . * . ..

* 0
0 0

AA 00 Figure 4. J(t-I0) for

TAVTSAO sample problem... ~~._ :.

I .4 6 ,6 o

* IPPOFFET (m

22

i • • 7



1.51

TARGET SHADOW

- -

tot
eo i I I I " 3 I ii

0 4 6 1 10

OFFSET (em)

Figure 5. Intensity versus offset from target axis.

We now return to the problem of calculating J Recall that

JIjPEP is given by (eq (9))

ik(s, -s2)
* () cYcY J(P)e dPd 2  , (42)

which can be written

2 ~ iks2  [Ase
(kD)2 e e 1 dP] dP (43)

,J =a - s-E2] s2 - 2

But we note that the function J(P'Ia) can be introduced, since o(P2) is

a circle. We have

23
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iks1

sj[Io(P2)] = Io(P2) es 2  dP1  (44)

so

kD 0 ~-iks 2

j (kD) j [pIa(p 2 )] e dP2  • (45)

From its definition, J[P Ia(P2)] has circular symmetry about P2. Equi-

valently, it has circular symmetry about P{. Since the major work in

evaluating the integrand of JI(PI is in evaluating J[Efla(P2)], it

is natural to express the integral in polar coordinates about P{. The

geometry involved is shown in figure 6. We define the e = 0 axis as
*

passing through P, and P1. Defining the aperture function

1 if (r,e) is inside a
u(r,8;o) = (46)10 otherwise

we obtain

2r) ( fRi+(r-rc) rJ[PIlc(P2)]

(47)

-iks
(f2ir e 2u(r,O;a - a') d dr
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where RJ, from figure 6, is the distance from PI to the center of a - a'

and r0 is given by

f0 if ;j is inside a - a'

R, - (r a - rc) if ;I is outside a - a'

Also from figure 6, and the law of cosines, we have

s 2 =/D + r2 + d2 - 2rd cos e (49)

where d is the distance between i and

FC 00
2 )

t2

4lp

Figure 6. Geometry for calculating central contribution.
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When r _ (r0 - rc) - R1 , u(r,e;o - 0') - 1 for all values of 0.

This occurs only when P1 is inside a - a' (as shown in fig. 6). When

(ra - rc) - a< r < R, + (ra - rc), there is a pair of values (00 , e1)
such that u(r,e;u - a@) = 1 only when o0 <_ e j el (also shown in fig.

6). From the diagram we see that there is a 0' such that O0 = IR - 6'

and el = OR + 0'. If .1 is at Cx,yjo) ad ;I is at Cx ,y!,o), with

the origin at the center of a, we have from simple geometry

R =.x12 + y. 2

S=Vxi2 + yi2
2

(50)

d =xVCx- x2)2'+ (yl. y2j2,

OR cos- 2Rld

and

(r2 + R22R 1 r- rc)2)S=cos-1 (r •)

When P1 falls outside a - a' (R1 _ ra - rc) we have
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'I +( rikr
9 R8  2 a- dr

L~~~Je Asr[I o~)

e~5 dd dr

+(kO)2 rJr[PrIOP-R, (52

[fe2w e -ik 2 1d
e 82

th n e B ~ '~ ) AD e y h outearci t gr lo)e u tinR51 n (52)

(2e -iks 2  F k 2 1j 0e 8 d8 dri~ e
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and

I OR+e' -iks 2  R+e' iks 2
e de e~ d .54

0R-~ 2 LeR-e s2

These forms will be considered next.

In order to reduce the integrals in e to canonical forms, we would

like to make the change of variables u = ks2. However, since s

4 2 + r2 + d2 - 2rd cos 0, we must restrict the range of e (say, to

0 < 8 < w) for the change of variables to be valid. Thus, each of the

above forms must be modified to meet this condition on the range of

integration. Because of the nature of cos e, the first form can be

easily changed:

02w iks 0 eiks 2

e dO 2 J de (55)

This leaves the second form to consider:

)R+0' eikS2
feede s

R- 2
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From the equations (50) for OR and 8', we have

0 < 0R' W I

thus,

- < OR - 8' < W

and

0 < OR + 0' < 2

We identify four cases:

(1) 8R - 0' > 0, eR + e' <

In this case the variable transformation in question has a single-valued

inverse on the range of integration.

(2) 8R - 6' < O, OR + e' <

In this case the integration can be treated as follows:
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* ... de d er'**de+ fOe .

f feR-' . dO + oRl . O(6

- fes .. dO +o:: ... dO (6

R R

The last step is taken to avoid integrating over [0,0'] twice.

(3) eR 0- e> 0, OR 0,9 >

The integration is treated as follows:

(eR+e, eR~e

j~~R ... dO ... de +Jf, .d

(using the substitution e + 2w -0) d ~r(Re)..d

S fORO *..de f~ ... de
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f2r(eR+e')fi

O~e ... de + 2J . de (57)
e R- 21-( R +e)

The last step follows from observing that since OR w, OR 0' < 2w-

(OR + e')-

(4) eR e,0 < 0, eR + 61 >W

The integration is treated as follows:

JOR+..d de +fw ... d6 ... d 8

d0 0f .. O f -(OR+e')..d (58)

= f OR... dO8 f . de

+ 2 f ( . de

(OR + e'). in all cases, the integral in e can be broken down into a

sum of integrals, each of which is over an interval [OLD %'~f where
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0 < < iU  w and hence u = ks2 is uniquely invertible on each such

interval. We can then perform the change of variable to reduce all

these integrals to canonical form. We have

u =ks2 =kD2 + r2 +d2 2rd cos8 , (59)

yielding

de8 = 2udu,(60)

k2 Y4rd2 - [D2 + r2 + d 2 - (u/k)2 ]2

le=e. + r dj + 2 (rd ( -cos eL), (61)

u10 ,0  = k4 + - 2 rd2, (1 + cos e,) . (62)

If we define the quantities

A = k4 r d (63)
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B =kD (r.Aj d) (64)

we have

dO 2udu (5
V(U2 -A

2 ) (B 2 
-U

2 )

UI0 e =IA2 + 2rdk2(1 cos e] (66)

Ujee =VB2 -2rdk
2 (1 + Cos OU) .(67)

Finally, we obtain

D~ Aks N4B2-2rdk2(1+coseU)

f 2 d02k2dk11coeL (68)

iu du
ii4(u2 -A

2)(B2 -U 2)

As in the integration for j 2 ~ 1 ~) when D >> r + d numerical problems

arise because the interval of integration is small compared to the
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location of the interval. In the integral, we have two differences of

large numbers to consider, namely, u - A and B - u. If we perform the

change of variable x + u - A, we obtain

U iA A2 -2rdk 2 (1+cos 6U) - Ae de 2k e A

J 2+2rdk2 -o@L A

(69)

e i X dx

(x + A)4x(B - A - x)(x + 2A)(x + A + B)

Now all the differences between large numbers can be calculated before-

hand. We are concerned with the quantities

XL = VA2 + 2rdk2(1 - cos OL) - A

(70)

xU VB 2 
- 2rdk2(1 + cos 6U) - A

and

B -A

Substituting for A and B, and using the expansion
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V-1 +x .1 + x ~x2 x (71)

we obtain

krd(1 - cos DL) 1 (r - d)2 + rd(1 - cos eL)
XLU D -D2

[ ( r - d)2 + rd(1 -Cos L) (2D21(72)

(r - d)2 [(r -d 2rd(1 -cos D0L)])
8D4

U =krd(1D- cos (U C 2 r - d) D + rd1- cos (U

(r1 d)2 +rd(1 Coj

krd~i- Co rd) 1 U)CO

(r -d)
2 + dU Cs i

I - , (73) .
D
2

(r -d)2[(r - d)2 + 2rd(- cos O) ,

8D4  cs )
and

B-Aa2krd 1 r2 + d2 ( 2 + d2) (r2 ;d 2)2 1

V

The substitution x + u - A works well unless the entire interval of

integration is very close to the singularity at B. This happens when

35

P



both Icos 8U - Cos OLJ << 1 and 11 + cos eUj << 1. In this case, we are

better off using the substitution y + u - B. This yields

U ekS2 dO 2k2 eiB J B2 -2rdk2 ( 1+cos eU)-B

L 2 dA 2 +2rdk2 (1-cos L)-B

(75)

iye dy

(y + B)4(B - A + y)(-y)(y + B + A)(y + 2B)

We still need to calculate B - A, as above, but the expressions for the

limits of integration have changed. We now need the values

YL =A2 + 2rdk
2 (1 -Cos - B (76)

and

YU =NB2 - 2rdk2 (1 + cos eU) - B (77)

Using the same expansion for /1 + x, we obtain

krd(1 + cos L) 1(r + d)
2 

- rd(1 + cos L)

YL - D -

(r + d)2 - rd(1 Cos eLi

L ( D2  (78)

(r + d)2 [(r d)2 -2rd( cos eL)])

8D4
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and

YU krd(1 + cos eU) ( 1 (r + d)2 - rd(1 + cos eu)YU"- D D2

X (r + d)2 - rd(i + cOs Ou)] (79)
x - D2 ,

(r + d)2 [(r + d)2 - 2rd(1 + cos

8D
4

This second substitution, in turn, works well unless the interval of

integration is near the singularity at A. This happens only when

IcoS U - cos L << 1 and II - cos «LI << 1. Since the interval of

integration cannot be entirely located near A and entirely located near

B at the same time, one or the other of the above substitutions can be

used for any problem. We will use the first substitution, x + u - A,

unless cos OL < 0. In that event we will use the substitution y + u -

B, since 11 - cos 0I << 1 cannot hold.
Ll

At this point we have specified how to do all the calculations

for JI(N,),_ except the integral in r. The integrands in this case

cannot be expressed in the canonical form eiXf(x) in any useful way, so

another method of integration is needed. As will be shown in the next

section, the behavior of the integrand in this integral is quite varied

in character, depending strongly on the separation of the observation

points PI and Pj. Thus, the number of points at which - will be neces-

sary to evaluate the integrand cannot be predicted wei Rather than

using a fixed Gaussian quadrature scheme where all the work done at one

'3
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level of approximation is useless at the next level of accuracy, it

would be more sensible to use an integration scheme that makes use of

all previous work when trying to increase the precision of the integra-

tion. One of the best such schemes is an adaptive Gaussian scheme

modified to force all points previously used to be included at the next

level of precision.4  Since such a routine has already been developed,5

we will not elaborate on it here. Rather, we will proceed to describe

the results of calculations for a sample problem.

4. SAMPLE PROBLEM--IDEALIZED GOODMAN SURFACE

In the previous section we described how to evaluate the mutual

intensity between two points on an observation plane when the mutual

intensity of the reflected radiation at the target plane is given by

1 if IP - P21 < rc and

Ja( 1 2) = 3a( i - P2 1 'rc) Pi and P 2 are inside a (80)

0otherwise

for an arbitrary cutoff radius r r The justification for considering

such a simple model for J was briefly mentioned in section 1. Any o

that depends only on the distance between the evaluation points

and P2 can be approximated arbitrarily well by a finite sum of

functions of the above form with various rc's; moreover, such a J

dependence is expected when a flat, homogeneously and isotropically

4T. N. L. Patterson, The Optimum Addition of Points to Quadrature
Formulae, Math. Comp., 22 (1968), 847-856.

ST. N. L. Patterson, Algorithm for Automatic Numerical Integration
Over a Finite Interval, Algorithm 468 Comm. of the ACM, 16, 11 (November
1973), 694-699.
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rough target is illuminated by a coherent light beam. Further justifi-

cation for considering the form of equation (80) is furnished by Good-

man's recent discussion6 of a simple physical model of J for flat rough

surfaces whose slope distribution is concentrated mainly in a low slope

region.

An example of Goodman's predictions for J is shown by the solid

curve in figure 7, which assumes uniform reflected intensity of unity at

a; also shown, by dotted lines, is a rough approximation to the pre-

dicted J -curve by two functions of the form in equation (80). It is

clear from figure 7 that very good approximations of Goodman-surface

J.'s can be obtained by using only a few different values of rc.

In this section, we apply the results of section 2 to an example,

namely, that of a target whose Ja corresponds to the Goodman surface of

figure 7. We approximate Ja by the dotted step function in figure 7 and

calculate JB(P at an observation plane for various PjP pairs.

1 _-APPROXIMATED MUTUAL INTENSITY (SEE TEXT)

WAVELENGTH = 10.5 um
HEIGHT VARIANCE =4 pm2

I -t

OC MUTUAL INTENSITY

1-27-

CORRELATION LENGTH
lo a I 1 J I I I I I I I , , I

0 1 2 3
SEPARATION (mm)

Figure 7. Mutual intensity at Goodman surface.

6J. W. Goodman, Statistical Properties of Laser Speckle Patterns,

Laser Speckle and Related Phenomena, Ed., J. C. Dainty, Topics in
Applied Physics, 9, Springer-Verlag (1975), 63-68.
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In its simplest form, Goodman's model describes J in terms of the
second-order statistics of the surface height variations. Specifically,

we have

,G(')2) ) (Ph(i !2I)

In the above, JG(PIP2 ) is the Goodman model J and I(P) is the re-

flected intensity at point P. In the exponential, o2 is the surface

height variance scaled to the effective wavelength, given by

2= [k(1 + cos 0)12 a2h , (82)

where k is the wave number, 8 is the angle of illumination relative to

the surface normal, and ao is the actual variance of the surface height.
Finally Ph(x) is the normalized surface height autocorrelation function,

which, for simplicity, is assumed to be of the form

P Ph(1 1 - 21) = exp 2 (83)

where r0 is the surface roughness correlation length. The distance ro

W is the separation at which the surface height correlation reaches a

value of l/e. Figure 7 plots a typical JG(El!'2 ) versus IL'1 - 2I"
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The numerical parameter values used to produce figure 7, and which

will be used for the sample problem of this section, are as follows:

Wavelength (1) = 10.6 im,

Surface height standard deviation (oh) = 2 Um, (84)

Angle of illumination (B) = 0,

Surface correlation length (r0 ) = 1.06 mm (= 100X).

These values correspond to a surface that is optically flat over dis-

tances on the scale of 100 wavelengths, illuminated perpendicularly by a

10.6-Um laser (e.g., a C02 laser), and observed at a distance of 10 m.

Hills and valleys on the surface average 2 Um of deviation from the mean

surface height. These values yield, for the other quantities used in

the Goodman model, I

2= 5.6217e8

(85)

PhO X )  exp(-889,996 x
2 )

a p:

For our sample problem we take

a "

ja(p11?2) e (r -~I~ + 1 e') aa( IF, F 21 rc) ,(86)
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where r c is chosen as that point separation for which JG =( + e ) /2;

i.e., the separation at which JG has fallen halfway from its maximum

value of unity to its minimum value e . The desired value of rc is

readily found as

rc =r o  n 1/2n 2+ (87)

which for the chosen numerical values of the sample problem gives rc =

3.83445 x 10- 4 m. Equation (86) gives the dotted line approximation to

G shown in figure 7. To complete the specification of our sample

problem, we take

Range (D) = 10 m

(88)

Target spot radius (ro ) = 0.05 m

(Note that these values are the same as were used for the sample dif-

fraction pattern calculations of the last section.)

The contribution to JB(IP from the first term of equation (86)

0 is

-2 (kD 2
e- T- JP 0) J*I2 °Y)
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(compare with eq (4) and (40)). We call this part of Jthe residual

contribution since it arises from the low dotted plateau in figure 7,

which represents the residual phase correlation in the reflected field

at ca in the limit of large point separation. The residual phase cor-

relation is physically related to the specular component of reflection

from the target. Figure 4 plots the modulus and phase of J(Plla) appro-

priate to our sample problem. The contribution of the second term in

* equation (86) (which corresponds to the high phase correlation shown by

jfor small point separations) to JBV' is more difficult to repre-

* sent since it depends not only on the separation of P~ and P!, but also

*on their location within the shadow of a. (We will denote by a the

shadow of a on the observation plane.) We note that JB( ,l 2) is invar-

iant to rotation about the center of ;since the problem is circularly

symmetric. We also note that JBFl is invariant to ref lection

through the center of a. Thus, one convenient way of examining

~B~'~)is to f ix one of the points (say, Pj') at some distance from

the center of a and move the other point (~)away from PIat various
angles from the radius. The geometry of this layout is shown in figure

* 8.

Figures 9 to 11 show the results of calculations for the sample

* problem for three positions of the fixed point, P. Figure 9 shows what

*happens when Pis at the center of a (R1  0)o and Pis moved away from

P. (Since this case is circularly symmetric about P, there is no

I need to plot what happens at different angles from a radius.) As can be

seen, the sharp step function character of the approximated mutual

intensity at the target plane (fig. 7) has been spread out sub-

stantially, although it is still apparent that the mutual intensity

Ibetween P;and PIis stronger when the two points are close together.
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Figure 8. Geometry on observation plane for exai.A'ning J(j

0.3 . 1

0 Iii

0.1.

0.02

0 2 4 5 a 10
S SEPARATION (mm)

Figure 9. Mutual intensity versus observation point
separation--fixed point at center.
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Figure 11. Mutual intensity versus observation point separation-
fixed point 3 cm from center.
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Figures 10 and 11 show the results when RI = 1 cm and R = 3 cm,

respectively. For each of these cases, PI was moved away from P at

five angles, as indicated, from the radius passing through P1. As can

be seen from the figures, the mutual intensity magnitude as a function

of d (fig. 8) does not vary significantly for the various values of 6,

nor for the three positions of P'. The mutual intensity phase, however,

does show significant variation from case to case. In all cases, the

phase exhibits very sharp jumps as d increases. However, the variation

of the phase as a function of 0 is noticeably more pronounced for R= 3

* cm (fig. 11) than for RI = 1 cm (fig. 10). Of course, the phase does

not vary at all as a function of angle for R= 0, since there is cir-

cular symmetry.

The characteristics of the mutual intensity can be described in

general terms as follows. To a first approximation, the magnitude of

the mutual intensity between two points within ; varies with d in the

manner shown in figure 9, regardless of where the two points lie within

*a. The phase of the mutual intensity varies with d qualitatively, like

the case when P! is at the center of y. However, the phase is modulated

by some perturbation function of 6 for nonzero values of RI . This

perturbation becomes more strongly a function of 0 as P1 is placed

farther out. The specific nature of this perturbation is difficult to

ascertain, however, from the calculations shown here.

The real part of JB is of the most direct interest for optical

heterodyne receiver analysis, which is the goal of the computational

apparatus being discussed in this report. The major components of an

optical heterodyne receiver are a photodetector/narrow-band amplifier

combination and a local oscillator. The local oscillator is a highly

coherent optical source that illuminates the photodetector at relatively

high power levels, whose frequency is slightly shifted relative to that
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of the received (target reflected) radiation. McGuire 7 has discussed

the dependence of the average power output of such a receiver on the

mutual intensity functions of the target-reflected radiation and the

local oscillator field on the photodetector's active surface. He has

found that the dependence is through only the real part of the product

of the two mutual intensity functions. Since the mutual intensity

function of the local oscillator is real and constant over the photo-

detector surface for normal-incidence, uniform-intensity plane-wave

local oscillator beams, it follows that the heterodyne power depends on

only the real part of J in such cases (assuming the photodetector lies

in our observation plane).

Figures 12 to 14 show plots of the real part of JB(P '.2) for the

cases we have calculated. Despite the apparently discontinuous char-

acter of the phase of the mutual intensity as a function of d, the real

part shows fairly regular behavior. In these figures, though, it is

apparent that the dependence of phase on 6 becomes much stronger as R

is increased. The dependence of phase on 0 manifests itself as the

spreading of the real part of the mutual intensity for the various

values of 0 plotted. Figure 14 shows the maximum spreading observed.

It is interesting to notice that in figure 14 the behavior for 6 = 0

closely matches the behavior for 8 = w; similarly, the behavior for 0 =

w/4 matches that for 0 = 37r/4. It thus might be a good first approxi-

mation to characterize the real part of the mutual intensity as follows.

At R1 = 0, the real part is a function of d as shown in figure 12 and

has circular symmetry about Pi. As RI increases, the real part remains

similar in appearance, but the symmetry about P1 becomes elliptical,

with the major axis of the ellipse of symmetry perpendicular to the

radius through P1. The eccentricity of the ellipse increases with R1 .

7Dennis W. McGuire, Coherent Detection if Partially Coherent Sources,
Opt. Lett., 5, 2 (February 1980), 73-75.
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Figure 12. Mutual intensity versus observation point separation (real
part)--fixed point at center.
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Figure 13. Mutual intensity versus observation point separation (real
part)--fixed point 1 cm from center.
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Figure 14. Mutual intensity versus observation point separation
(real part)--fixed point 3 cm from center.

5. DISCUSSION

It is not the purpose of this report to quantitatively describe the

mutual intensity function, but rather to describe how this function can

be calculated. We have demonstrated that these calculations can be

carried out within the limits set at the beginning of this report.

However, as was stated earlier, these calculations are only a first

step. The final objective is to examine the utility of optical heter-

odyne systems in laser fuzing systems. To this end, two areas of con-

tinued research are outlined.

The first area concerns a problem that should be considered in any

future work, which is that a laser fuzing system generally contains a

lens system in the receiver to collect and focus the received field onto

a photodetector. The mutual intensity propagation equation considered

in this report describes free-space propagation of light; it does not

cope with propagation through lenses. Centered collecting optics can be
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dealt with by calculating the mutual intensity at the entrance pupil,

mapping the entrance pupil response to the exit pupil using principles

of ray optics, and then propagating the mutual intensity at the exit

pupil onto the observation plane (photodetector). The last step is

quite problematic, however, because the mutual intensity at the exit

pupil (the "target plane" for the second propagation calculation) is not

necessarily dependent solely on IP 1P 2I. At present, we have not inves-

tigated how this should be handled.

A related problem occurs in considering the power output from a

photodetector in a heterodyne system. In this case, an expression

involving the mutual intensity at the observation (detector) plane must

*be integrated over the detector surface. Again the function to be

integrated would probably not be a function of IP;-Pji alone. The

integrand, however, is somewhat simpler, since no propagation, and hence

no path length differences, are involved.

Both of the above calculations would be simplified considerably if

the mutual intensity at the observation plane could be decomposed into a

,um of appropriate radially dependent functions. Lens systems could

then be dealt with using the techniques of this report. (However, edge

effects, which we have not considered, may be too prominent in this case

to be ignored.) Also, calculating detector power output would be

reduced to calculating a sum of integrals, each of which is in essence a

4 convolution of a radially dependent function with the detector surface.

The first proposed area of future research is to investigate how, or if,

mutual intensity functions calculated using the techniques of this

report can be thus decomposed.

The second area of continued research is to develop a taxonomy and a

catalog of responses to step-function mutual intensities. This would
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allow a parametric characterization of the mutual intensity at an obse:-

vation niane in terms of the cutoff radius r c of J0(jItP-P ,rc) and

geometrical parameters. Such a catalog would be the first step toward

achieving a better understanding of the near-field behavior of the

mutual intensity function, which is an essential feoture for the heter-

odyne system analysis because of the relatively short detection ranges

involved in fuzing. If this information were to be developed, many

expensive intermediate calculations could be avoided.
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APPENDIX A.--FORTRAN PROGRAM TO CALCULATE PROPAGATION OF MUTUAL
INTENSITY FUNCTION
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C PROGRAM RAYS

C PU RPuiJ
C THIS PROGRAM CALCULATES THE MUTUAL INTENSITY BETWEEN TWO
C POINTS, ONE BEING FIXED AND THE OTHER MOVING AWAY ALONG
C SLLECTED RAYS AT VARIOUS ANGLES PROM THE RADIUS.
C
C USAGE
C THIS PROGRAM REQUIRES A SET OF CONTROL CARDS ON LOGICAL UNIT
C 5 TO DIRECT THE CALCULATIONS. THESE CARDS ARE AS FOLLOWS: %

C CARD # CONTENTS FORMAT
C I NPROB 13

C (2 RANGE D15.7
C WAVE D15.7

C RSIGMA D15.7
C 3 RCORR D15.7
C SIGMA2 D15.7
C 4 NPOSN 13

C (5 Ri D15.7

C ERR DI5.7
C ICD 14
C 6 THSTEP D15.7

C THSTRT D1S.7
C NTHSTP 14

C 7 DSTEP D15.7
C DSTART D15.7

C NDSTEP 14 ))
C IN THE ABOVE, THE SEQUENCE OF CARDS AFTER CARD I IS RFPEATED

C NPROB TIMES (NPROB IS THE NUMBER OF PROBLEMS). AFTER EACH
C OCCURRENCE OF CARD 4 (ONCE IN EACH PROBLEM SETI, CARDS 5

C THROUGH 7 ARE REPEATED NPOSN TIMES (NPOSN IS THE NUMBER OF
C SETS OF POSITIONS FOR OBSERVATION POINTS).

C
C THE PROGRAM PERFORMS THE CALCULATION OF MUTUAL INTENSITY FOR
C EACH PROBLEM AND EACH POINT PAIR AS INDICATED BY THE CONTROL

C CARDS AOVE. THE POSITION OF THE OBSERVATION POINTS ARE
C DETERMINED BY THE CONTENT& OF CARDS 5-7 AS FOLLOWS. RI IS THE
C DISTANCE OF TUE FIXED POINT PROM THE CENTER OF THE TARGET SIGMA.
C IERR AND lt4D ARE EXPLAINED BELOW.) THE SECOND POINT IS MOVED
C AWAY FROM THF FIRST ALONG LINES AT VARIOUS ANGLES PROM THE RADIUS p
C PASSING THROUGH THE FIXED POINT. THERE ARE NTHSTP OF THESE
C LINES, AT ANGLES THSTRT, TmSTRT+THSTEP TUSTRT+2*THSTEP, ETC.
C ALONG EACH LINE, THE SECOND POINT IS LOCATED AT VARIOUS SEPA-
C RATIONS PROM TEE FIXED POINT* THERE ARE NDSTEP POSITIONS FOR
C THE SECOND POINT, AT SEPARATIONS OF DSTART, DSTART+DSTEPt
C DSTART,2*DSTEPt ETC. PRUM THE FIXED POINT.
C
C THE VARIABLhS ERR AND ICD ARE, RESPECTIVELY, THE REQUESTED W
C MAXIMUM RELATIVE ERROR OP THE NUMERICAL CALCULATIONS AND A
C CODE REQUESTING THE CALCULATIONS DESIRED. IF ICD=I, ONLY
C TE RESIDUAL CONTRIBUTION TO THE MUTUAL INTENSITY IS CALCU-
C LATED, OTHERWISE THE PULL MUTUAL INTENSITY BETWEEN EACH PAIR
C OF OBSERVATION POINTS IS OBTAINED (WITHOUT, HOWEVER, THE EDGE

C EFFECTS INCLUDED).

C
C THE REMAINING VARIABLES ABOVE ARE AS FOLLOWS:

C RANGE -THE OBSERVATION DISTANCE FROM TEE TARGET.
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C WAVE - THE WAVELENGTH OP THE ILLUMINATING LIGHT.

C RSIGMA - THE RADIUS OF THE TARGET.
C RCORR - THE PERFECT CORRELATION RADIUS.

C SIGMA2 - THE VARIANCE OF THE SURFACE IEIGHT ROUOHNESS,
C SCALED TO THE WAVELENGTH.

C ALL OF THESE QUANTITIES ARE INPUT IN METERS, EXCEPT SIGUA2,

C WHICH IS DIMENSIONLESS.

C
C NOTES
C THIS PROGRAM WAS WRITTEN TO USE A VARIATION OF THE ROUTINE

C IFEIX OF THE MDL PAGLOAD LIBRARY IN WHICH THE NAME FOPX
C IS ASSUMED FOR THE SUBROUTINE WHICH COMPUTES THE INTEGRAND

C FOR IPEIX. THIS WAS DOME FOR THE SAKE OP RUNTIME EFFICIENCY.
C
C IN ESTIMATING CPU TIME FOR THIS PROGRAM WHEN THE FULL MUTUAL

C INTENSITY IS BEING CALCULATED, ALLOW 60 CPU SECONDS POP EACH
C POINT PAIR WHEN RUNNING ON THE 370/168 AFTER BEING COMPILED
C WITH THE FOWfRAN H-EXTENDED COMPILER WITH OPTIMIZATION LEVEL 2.

C

IMPLICIT REAL*8 (A-HO-Z)
COMPLEX*16 JBJRES

REAL*8 JBMAGqJRPH
COMMON /EVCM/RANGEWAVEKtERR/PROBLM/ESIGMAtRCORRSIGMA2

COMMON /PARM/DM !,THRTA

DATA PI/3. 141592653589783238462643D0/
CALL PGMASK

C
C READ NUMBER OF PROBLEMS AND LOOP FOR EACH PROBLEM.

C
READ (5,5000) NPROB

5000 FORMAT (13)
DO JO NP=INPROB

C
C BEGIN PROCESSING - READ PROBLEM PARAMETERS

C
READ (5,5010) RANGEWAVERSICMARCORRSIGMA2

5010 FORMAT (3D15.7)
WAVE K=2. DU*PI/WAVE

WRIFE (6,60001 RSIGMAVPANGEIRCORRgSIGMA29WAVE

6000 FORMAT (9 TARGET RADIUS=9,2PPF8.6, CM, TARGET DISTANCE=,OPFS.o0/
0 CORRELATION RADIUS=0,2PP10.8,' CM, SURFACE HEIGHT VARIANCE=1,

* OPFPU490, WAVELENGTH=6,6PP6.2, MICRONS
O
)

C
C READ NUMBER OF POSITION PARAMETER SETS; LOOP FOR EACH ONE.
C

READ 15,5000) NPOSN
DO 30 NPOS=lNPOSN
READ (5S020) RtEERRICDTISTEPTESTRTtNTSTPDSTEPDSTARTtNDSTEP

5020 FORMAT (2D15.7,14)
M I=DABS( RI)

C

C COMPUTE ANGLE OF RAY FROM RADIUS - NORMALIZE TO BE BETWEEN i0PI).
C

DO 30 NTH=lNTHSTP
THETA=PI*(THSTRT.TRSTEP*DFLOAT(NTH-1))

10 IF (THETA.GE.O0.DO.AMD.TETA.LE&PI) GO TO 20
IF (TEETA.LT.O.DO THETA-TRETA+PI

IF (THETA.GT.PI) THRETA=THETA-PI
00 TO 10

C
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C STEP OUT ALONG HACK RAY -CALCULATE GEOMETRY
C
20 DO 30 MD-19NDSTEP

D=DSTARTDSTBP*DFLOATI ND-Il
X2=Rl-]DDCOS(=TETA)
Y2-D*DSIN (THETA)
R2ZwDSORTI 12*X2+Y2*Y2)
WRITE (6,6010) RIX2VT291D

6010 FORMAT (90OBSERVATION POINTS LOCATED AT 1',2PF6.3,*, 0.0 )v lo,
* P6.3,',*,I6*3,') CM.*o SEPARATION =etP6.3,' CM.11

C
C CALL GETANS TO OBTAIN RESIDUAL AND, IF DESIRED9 TOTAL RESPONSE.
C IF ICD=l, ONLY TEE RESIDUAL IS COMPUTED, AND THE! TOTAL IS SET
C TO THIS VALUE;9 OTHERWISE, THE TOTAL RESPONSE INCLUDES THE SHORT
C RANGE CORRELATION CONTRIBUTION.

C CALL GETANS(RIR2,JRESJBICDICNECKJ 
r

C
C COMPUTE MAGNI1TUDE AND PHASE OF TOTAL RESPONSE AN4D PRINT ANSWER.
C

JBMAG CDABRS(J 8
JRPH=O.DO
IF (JBMAG.GT.0.DOI JBPH=DATAN2(DIMAG(JB),DREAL(JB))/PI
WRITE (6,6020) JRES,JB,JDMAGgJBPR N

6020 FORMAT (0 JRZS=(',1PDI5.8,*,',DlS.S,l), JB=(1,1015.8,2,',D15.8,
* ), MAG=99015.89@p PRASEH',D15so)

IF (ICRECK.LT.0) WRITE 16,6030) ICEECK
6030 FORMAT (SXPI*** ICRECK =8,1390 ***I)
30 CONTINUE

STOP
END
SUBROUTINE OETANSIR1,R2,JRESJUICDICRlECK)

C PURPOSE!
C THIS SUBROUTINE COMPUTES THE MUTUAL INTENSITY BETWEEN TWO
C DATA POINTS, NEGLECTING EDGE EFFECTS. IF ICD-1, ONLY THE RESIDUAL
C CONTRIBUTION IS CALCULATED AND JS IS SET EQUAL TO JRES.
C

IMPLICIT REAL*8 (A-H,O-Z)
COMPLEX*16 EVJJBJRBSVOSUBAC, INTOND
EXTERNAL INTOND
COMMON /EVCM/RANGE,WAVEK ,ERIPROBLM/RSIGMARCORRtSIGMA2
DATA PI/3.141692653589793238462643D0/
RES=DEZP l-SIOMA2)
RMAX-RI+RSIGNA-RCORR
SCALE(IWAVEK*RANGB/ 12.DOeII) )**2

C
4C CALCULATE SCALED RESIDUAL CORRELATION CONTRIBUTION

C
JRES=RES*EVJ(RIRSIGMA3*DOMJG(SVJ(R2,RSIOMA))

C
C IF REOUESTED9 INCLUDE THE CONTRIBUTION FROM SHORT RANGE
C CORRELATION, EXCLUDING EDGE EFFECTS.
C

IF (ICD*NE~ll JB-JRRs*( 1.DO-RES)*OSUDAC(O0D,RmAIHRRNPTS, .
*ICEECK ,RELERR91NTONDJ

J BSCALE *JH
J RES-SCALE*JRES
RETURN
END
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COMPLEX FUNCTION INTGND*I64RADIUS)
C PURPOSE i
C TlHIS FUNCTION EVALUATES THE INTHORAND OP THE OUTERMOST INTEGRAL
C FOR COMPUTING THE SHORT RANGE CORRELATION CONTRIBUTION TO THE
C MUTUAL INTENSITY FUNCTION.

K- C
IMPLICIT REAL*8 (A-M,O-Z)
COMPLEX*16 EVJ,EVTH
COMMON /PROBLM/RSIGMA ,RCOMR/EVO4/RANGE, WAE
COMMON /PARl/Dq 21,THETAR
DATA P1/3.*14 1592653589793238462643D0/

C
C EVALUATE FIRST FACTOR OF INTEGRA4D -RESIDUAL PROM A
C. SMALL CIRCLE.
C

INTGND=&ADIUS*EVJlIRADIUS, RCORR)
Cr
C EVALUATE SECOND FACTOR OF INTEGRAND -AN INTEGRAL IN THETA
C

IF (RADIUSoGT.RSIGMA-RCORR-R11 00 TO 10
C
C TEST FOR DEGENERATE CASE
C

THETAI=Pl
IF (D&EQ*O.DO) Go TO 50

C
C INTEGRAL IN THETA IS OVER A FULL CIRCLE -INTEGRAND IS TWICE
C THE INTEGRAL FROM 0 TO PI IN THETA, TIMES THE FIRST FACTOR.
c

INTGND=1NTGND*2 .DO*EVTW (RADIUS,1 .DO,-1 .DO)
RETURN

C
C INTEGRAL IN THETA IS OVER LESS THAN A FULL CIRCLE -SELECT

C THE RIGHT BMEAKUP OF THIS INTEGRAL AND COMPUTE INTHORAND
C AS THE PRODUCT OF THIS INTEGRAL WITH THE FIRST FACTOR.
C FIRST, FIND THE ENDPOINTS OF THE INTEGRATION IN THETA. TEE
C ENDPOINTS ARE THETAR-flIETAI AND THETAR+THErAl.
C
10 I1lI RADIUS*RADIUE.R1*Rl-I RSIGMA-RCORR )**2)/2.DO*R*RADIUS)

THETAI DARCOsIX1)
IF fDo8Q.0.D03 GO TO 50
XR-1COS( TSETAR I
XAXI*XR-DSQRT( (1 .5-11Il l *11 DO-XR*XR I
IXinXl*XRDSQRT(I (lDO-X1*Xl)*(I.D0-IR*I3)I
IF (TIMTAR-TNfETAI.LT.0.DO.AND.TRETAR*TRETAI.LE.PI GO TO 20
IF ITHETAI-THETA1.GE.0.DOoAND.TEETAR.THETA1 .GT.PI) GO TO 30

'I IF (THETAR-THETAI.LT.ODOANDTHETARTNETA1 .GT.PI 00 TO 40
C
C CASE 1 - 0 <= THETAR-THETAl <- THBTAR+TNETAI <= PI
C

ILNTGND=INTGND*EVTH (RADIUS 92U ,A)
RETURN

C
C CASE 2 - THETAR-TNETAl < 0 <= THBTAR4THETA1 (C PI

* C
20 INTGND-INTGND*12oDO*EVTH(RADIUS,1.DOIE),EVTUI(RADIUSXBXA)

RETURN
C
C CASE 3 -0 <- THETAR-THETAI <- PI < TNETAR4THETAI
C
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i30 INTGND=INT(,N*(EVTH (RAD IUS,XB,XA) +2.D*EVTH (PADIUSiXAt-1.DO))

C CASE 4 - TUETAR-THETAI < 0 < PI < THETAR*THETAI
C
40 INTGND-INTGND*(2.DO*EVTII(RADIUSOl.DOXD).

* RTUI RADIUSZBXA)42.DO*EVTNIRADIUSIA,-1.DO)3
RETURN

C
C DEGENERATE CASE - INTEGRAL IN THETA CAN BE COMPUTED DIRECTLY
C
50 INTOND=INTGND*2.D0*TUETA1*CDEXPIDCMPLXI OoDO,-WAVEK*

* DSORTIRANCE**2,RADIUS.*2) )/(RANGE**2.RADIUS**2)
* RETURN

END
COMPLEX FUNCTION RVJ*16(RgRADIUS)

C PURPOSE
C THIS SUBROUTINE CALCULATES THE MUTUAL INTENSITY FUNCTION FOR
C POINTS SEPARATED BY A DISTANCE R'6 FROM A TARGET OF RADIUS
C $RADIUS'.
C

IMPLICIT REAL*S IA-H,O-Z)
COUPLEX*16 DZ
COMMON /EVCM/RANGEWAVEIKERR/EVJCM/RADOFPSET
COMMON /CONTRL/ ISWTCH
LOGICAL LONG
DATA P1/3. 141592653589793238462643D0/

C
FIX)=El.DO-2.DOs(IZDO-1.2D1*(1.DO-3.DI/(X*1)j/(X*X)i/(I*1))/X
GIXI=(1.DO-6.DO*(l.DO-2.Dl*(l.DO-4e2D1/E1*X))/EX.X))/(X*X))/(1*X)

C WAD=RADIUS

OPPSET=R
Z=CDEJP(DCUiPLX(0.DOVAVEK*RANGE)I

LONG-lRADIUS-RJ .LTol.D-2*RANGE
Srb=( (RADIUS-R)/RANGR)**2
A=WAVEK*RANG*(DSORtT( I.DO.SZD)-1 .D03
IF (LONG)3 A=WAVBX*RANGE*SKD*( 1.DG-SKD*(1.*DO-SED/2.DO)/4eD03/2.DO
SKD-WAV3K*RANGE*DSORTI 1 .I)0SXI>)P

C
C CALCULATE CONTRIBUTION PROM INSIDE TARGET CYLINDER LIP ANY)*
C

D-(0.DOV0.D03
IF (ReLT.RADIUS) D=LJ.DO*PI*Z*DCMPLX(

* G(WAVEK*RANGE34P(SKD)*DSIN(A)-GESKD3.DCOSIA3,

4 C * FIUAVEK*RANGH)-F(SKD)*DCOS(A)-G(SKD3*DSINIAJ)

C CALCULATE REMAINDER OF CONTRIBUTIONS
C

8=(RADIUS+R)/RANGZ)**2
IF (LONG) D=WAVEK*RANE*l*(loDO-B*(1.DO-B/2.DOI/4.DO)/2.DO
IF (.tOTLWNG) B=WAVK*RANGE*(D6QRT(1.DO+B)-l .DO)
I SWTCflz
IER-1
CALL IFEIZIhREALEIU~gAEI00000,.IDO*ERR,0OOlER)
IF (1R.!o.2) GO TO 10
EVJD*2.D0*Z*DCUPLIREAL ,EIMAG)
RETURN

10 WRITE (6,60101 RqRADIUSIA
6010 FORMAT It IFRIX DID NOT CONYERugB CALLED FROM BVJ.9/
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**VARIABLES ARE: R',1IPD13*690, RADIUSM9,D13.69
* % A=9pD13.6/9 PROGRAM STOPPED61

STOP
END
COMPLEX FUNCTION 8VTR*164OFFSETqCOSOCOSR)

*C PURPOSE
C THIS SUBROUTINE COMPUTES THE MUTUAL INTENSITY DUE TO SHORT
C RANGE CORRELATION FROM A TARGET, WITH ONE OBSERVATION POINT
C SEPARATED BY *D' PROM THE OTHER ONE.
C

IMPLICIT REAL*8 (A-HtO-Z)
LOGICAL LONG
COMMON /ldVCV/ RANG B,9WAVEX ,BSRR/EVTHCM /A 9B ,BLESSA
COMMON /CONTRL/ISWTCH/PARM/D
LONG=( ED-OFPSET)/RANGE, **2.LT.1.D-3
A=WAVF.E*DSORTIRANGB**2, ID-OFFSET )**2)
BSAE*DSRTIRANGE**2. (D.OPPSET)**2)
BLES SA=B-A
IF (LONG) BLESSA=
* 2 .DO*WAVEK*D*OFPSHT* (I DO-(OFPSET**2 ,D**2 )*

0 (I DO-(OFPSET**2,D**23/RANGE**2)/(2.DO*RANGE**2J-
* OFFSET**2-D**2 **2/ (8 .DO*RANGE**4) ) RANGE

C
C TEST IF NEAR TOP OP INTERVAL (A,B)
C

IF (COSOoLTo0.DO) GO TO 30
C
C NEAR BOTTOM END -TEST IF LONG RANGE APPROXIMATION SHOULD BE USED.
C

IF (LONG) GO TO 10
C
C USE SHORT RANGE EOUATIONS.
C

XOmVAVEK*DSQ~RT IRAWG**2D*2,OPPSBT**2-2. DO*D*OPPSET*COSO )-A
Xi-WAVK*DSQRT( RANGE**2,D**2,oFpsBT**2-2DO*D*OFPSET.COSI I-A
GO TO 20

C
C USE LONG RANGE EQUATIONS WITH INTERVAL NOT NEAR TOP END OP IAB)
C
10 XOinD*OFPSET*( 1.DO-COSO)

XIOD*OFPSET*(1.DO-COSI)
1=1 b-OFFSET) **2
XO-WAVEK*X0*I1.D0-(XXO)*II.D0-(X.XO)/RANGE**2)/I2.DO*RANGE**2)-

X Z(X.2.DO*XO)/Ig.DO*RtANGE0*4) I/RANGE
XI-WAVK*11*(1.D-X.Xl)*41.b0-IXXl)/RANGE**2)/12.DO*RANGE**2)-

0 X*(X,2.bO*Xl)/(8.D0*RAIGE**4) I/RANGE
* 20 Io-DMIMIjBLESSA,DM~AxI(XOq0.DO)

ZIDNAXi(0.DO.DMINlixIBLESSA))
1SWTCN=2

CALL iFEliXANSR,ANSi,XO,XI,100000,.IDO*ERR,0,0,iERw)
IF fIERoEQo2) 0O TO 60
EVTN=2.DOSWAVK*2*DCPLIANSR-AMSi)CDXIPIDCMPLIO.DO,-Al)

* RETURN

C NEAR TOP END - TEST IF LONG RAMGS APPROXIMATION SHOULD BE USED.
C
30 IF (LONG) GO TO 40

X0.WAVIE*DSORTI RANGE**2,DO**OFPST**2-2.DO*D*OPPSET*Coso)UB

* XI=WAVEE*DSQRTI RANGE**2,D**OFFS3T**2-2. DO*D*OPPSET*COSI 3-3
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GO TO 50
C
C USE LONG RANGE EQUATIONS WITH INTERVAL NEAR TOP END OF IA,B?
C
40 XO=-D*OPFSET*lleD04COS0)

Z1-D*OFFsET* (I DO *COS1)
X=(D4.OPPSET)*02
X0-WAVEK X*10*.O- (X410). 11.DO-1 110) /nAMGE**2 1/12 .DO*DANGE*2 1-

X *IX,2.DO*Xo)/1B.DO*RANGE**4) )/RANO3

* x.(ix2.D)O*xI)/tS.DO*RANGE**4) 3/RANGE
s0 XO-DNAI I-BLESSA9OMINlf110 .0.5))

XI1DMINI I0.b0,DMAXI(I1-DLESSA))
I SWTCN=3
t KR= I
CALL IFEIX(ANSRANSI,X0,Xl,100000,.IDO*333,0,0, lEE)
IF (IBE.EQ.2) GO TO 60
EVThZ2.DO*WAVLK**2*DCMPLI(ANSR,-AMSI )*CDEIPIDCMPLIIOoDO.40))
RETURN

60 PRINT *,OPPSETCOSOCOS,AgflULESSA, ISWCUI0,K1
STOP
END
SUBROUTINE FUPXIXY)
IMPLICIT RRAL*8 4A-B,O-Z)
COMMON /EVCM/RANGE ,WAVEX/EYJCM/R ,S

0 COMMON /EVTHCM/AgB#BLESSA/CONTRL/ISWTCU
COMMON /CMSPLT/AO
IOPT=O
0O TO 10,20,30),ISWTCH
STOP 1

C
C INTEGRAND FOR EVJ
C
10 Y=X/WAVSK

Y=(TYY2.Du*wRAEG*YS*S-R*/2.D.SDScjnT(y*T.2.D0.RANGE.T) 3

Y=DARCOS( 1)/ (X*WAVEK*RANGE)
GO To 40

C
C INTEGRAND, FOR EYTH
C
20 Y=1.D0/((X*A)*DSORTI1*(BLESSA-X)*l1+A,3)*(X,2.DO*A)))

0O TO 40
C
C INTEGPAND FOR EVTH - TOP OF (A,B)
C
30 Y-1.D0/((X.1)*DSQRT(-X*(X.BLESSA)*(X.AB)*(x.2.D0*B)))

* 40 IF IOPT.EQo1) 1='t*(1.DO+DCOS(X-A0))
IF (IOPT.EO.2) Y=Y*f1*D0+DSIN(X-A0))
IF (IOPT.EQ.3) YTODCOSII
IF IIOPT.EQ&4) I=Y*DSINIX)
RETURN
ENTRY PCOS1A(X.t)
I OPT=I
00 TO 410,20,303,ISWTCH
STOP 1
ENTRY PSIMXAIXPY)
I 0PT=2
GO TO 110,20,30),ISWTCH
slop 1
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ENTRY PCOI I y)
I OPT-3
GO TO (1O,20,303,IssTCR

ENTR PSINX(XYI

I QPT=-4
* GO TO 41O,20,3O),ISWTCH

STOP 1
END
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